Determinants and mechanisms of attentional modulation of neural processing.
نویسندگان
چکیده
This review contrasts the most-studied variety of attention, visuospatial attention, with several types of nonspatial visual attention. We: 1) discuss the manner in which spatial and nonspatial varieties of attention are experimentally defined, and the ecological validity of the paradigms in which they are studied, 2) review and compare differing effects of spatial and nonspatial attention on neural processing, 3) discuss the manner in which attention operates within the framework of an anatomical visual hierarchy, as well as 4) how attention relates to the temporal dynamics of visual processing, 5) describe cellular circuits and physiological processes that appear to be involved in attention effects, 6) discuss the relationship of attentional physiology to the perceptual and cognitive effects of attention, and 7) consider the strengths and limitations of several current models of selective attention. Throughout, we attempt to integrate the findings of monkey and human studies whenever possible. We have three main conclusions. First, two models, the Neural Specificity Model of Harter and colleagues and the Feature Similarity Gain Model of Treue and colleagues best incorporate findings in relation to both spatial and nonspatial varieties of attention. Significantly, these models explicitly note that the specific neuronal components used in attentional modulation of processing are flexible and determined by task demands. Second, current evidence also provides strong bases for deriving testable hypotheses about the specific brain mechanisms utilized by attention. Cellular processes, brain circuits and neurotransmitter components can and should be incorporated into our models of attention. Finally, it is increasingly evident that we can and should analyze temporal patterns of attentional modulation, both within and across brain areas. These patterns provide critical information on the dynamics of attention.
منابع مشابه
[Frontiers in Bioscience 6, d672-684, May 1, 2001] 672 DETERMINANTS AND MECHANISMS OF ATTENTIONAL MODULATION OF NEURAL PROCESSING
1 Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, New York 10962, 2 Department of Neuroscience and 3 Department of Psychiatry and Behavioural Science, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10462, 4 Department of Neurosurgery, Weill Medical College of Cornell University...
متن کاملInteractions of top-down and bottom-up mechanisms in human visual cortex.
Multiple stimuli present in the visual field at the same time compete for neural representation by mutually suppressing their evoked activity throughout visual cortex, providing a neural correlate for the limited processing capacity of the visual system. Competitive interactions among stimuli can be counteracted by top-down, goal-directed mechanisms such as attention, and by bottom-up, stimulus...
متن کاملOptimal Coding Predicts Attentional Modulation of Activity in Neural Systems
Neuronal activity in response to a fixed stimulus has been shown to change as a function of attentional state, implying that the neural code also changes with attention. We propose an information-theoretic account of such modulation: that the nervous system adapts to optimally encode sensory stimuli while taking into account the changing relevance of different features. We show using computer s...
متن کاملAn integrated microcircuit model of attentional processing in the neocortex.
Selective attention is a fundamental cognitive function that uses top-down signals to orient and prioritize information processing in the brain. Single-cell recordings from behaving monkeys have revealed a number of attention-induced effects on sensory neurons, and have given rise to contrasting viewpoints about the neural underpinning of attentive processing. Moreover, there is evidence that a...
متن کاملPerformance of the Wavelet Transform-Neural Network Based Receiver for DPIM in Diffuse Indoor Optical Wireless Links in Presence of Artificial Light Interference
Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 6 شماره
صفحات -
تاریخ انتشار 2001